Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-20240577

RESUMEN

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Filogenia , India/epidemiología , Genómica
2.
Encyclopedia of Forensic Sciences: Volume 1-4, Third Edition ; 3:555-562, 2022.
Artículo en Inglés | Scopus | ID: covidwho-2325890

RESUMEN

It's been 2 decades since the posting of the anthrax letters in the United States in 2001. This event marked a pivotal point in our history. It highlighted the vulnerability of modern society to acts of bioterrorism and set countries on a course to develop capabilities to pre-empt, prevent, react to, investigate, and recover from acts of bioterrorism. The current COVID-19 pandemic is a stark reminder of the enormity of the impact that the release of a biological agent, natural or otherwise, can have on an immunological naïve society. The purpose of this article is to describe how microbiology is applied in the investigation of bioterrorism, highlighting the modern advances in technology, particularly the DNA technologies, which have assisted this discipline as a forensic practice. © 2023 Elsevier Ltd. All rights reserved.

3.
Principles of Genetics and Molecular Epidemiology ; : 25-43, 2022.
Artículo en Inglés | Scopus | ID: covidwho-2314748

RESUMEN

The advent of high-throughput technologies, including next-generation sequencing (NGSs), is currently revolutionizing our understanding of several aspects in biological and medical sciences. Particularly, genomic, transcriptomic, epigenomic, and interactomic studies are having a profound impact on the progress of clinical epidemiology. This science is improving public health practices by linking the knowledge from the etiology, distribution, and risk factors during the appearance and progress of infectious and chronic diseases. In this sense, genomic tools have been incorporated in epidemiological studies for the identification of rare genetic variants, genetic and environmental risk factors, and accurate biomarkers for the diagnosis and treatment of several diseases. In this chapter, we aim to highlight the influence that genomics is having on different epidemiological traits by illustrating some examples about the control of the COVID-19 pandemic and the diagnoses, screening, and treatment of chronic diseases such as the infection caused by Helicobacter pylori, cancer, and rheumatoid arthritis. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

4.
Enferm Infecc Microbiol Clin (Engl Ed) ; 2021 Feb 19.
Artículo en Inglés, Español | MEDLINE | ID: covidwho-2307689

RESUMEN

INTRODUCTION: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. MATERIAL AND METHODS: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. RESULTS: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. CONCLUSION: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.

5.
Indian J Med Microbiol ; 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2303131

RESUMEN

PURPOSE: The emergence of highly mutated and transmissible BA variants has caused an unprecedented surge in COVID-19 infections worldwide. Thorough analysis of its genome structure and phylogenomic evolutionary details will serve as scientific reference for future research. METHOD: Here, we have analyzed the BA variants from India using whole-genome sequencing, spike protein mutation study, spatio-temporal surveillance, phylogenomic assessment and epitope mapping. RESULTS: The predominance of BA.2/BA.2-like was observed in India during COVID-19 third wave. Genome analysis and mutation study highlighted the existence of 2128 amino acid changes within BA as compared to NC_045512.2. Presence of 23 unknown mutation sites (spanning region 61-831) were observed among the Indian BA variants as compared to the global BA strains. Unassigned probable Omicron showed the highest number of mutations (370) followed by BA.1 (104), BA.2.3 (56), and BA.2 (27). Presence of mutations 'Q493R â€‹+ â€‹Q498R â€‹+ â€‹N501Y', and 'K417 â€‹N â€‹+ â€‹E484A â€‹+ â€‹N501Y' remained exclusive to BA.2 as well as unassigned probable Omicron. The time-tree and phylogenomic network assessed the evolutionary relationship of the BA variants. Existence of 424 segregating sites and 113 parsimony informative sites within BA genomes were observed through haplotype network analysis. Epitope mapping depicted the presence of unique antigenic sites within the receptor binding domain of the BA variants that could be exploited for robust vaccine development. CONCLUSION: These findings provide important scientific insights about the nature, diversity, and evolution of Indian BA variants. The study further divulges in the avenues of therapeutic upgradation for better management and eventual eradication of COVID-19.

6.
Viruses ; 15(3)2023 02 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2288559

RESUMEN

SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transcripción Reversa , ARN Mensajero/genética , ARN Viral/genética , ARN Viral/metabolismo , Genómica
7.
Front Microbiol ; 14: 1137086, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2272344

RESUMEN

RNA viruses are the etiological agents of many infectious diseases. Since RNA viruses are error-prone during genome replication, rapid, accurate and economical whole RNA viral genome sequence determination is highly demanded. Next-generation sequencing (NGS) techniques perform whole viral genome sequencing due to their high-throughput sequencing capacity. However, the NGS techniques involve a significant burden for sample preparation. Since to generate complete viral genome coverage, genomic nucleic acid enrichment is required by reverse transcription PCR using virus-specific primers or by viral particle concentration. Furthermore, conventional NGS techniques cannot determine the 5' and 3' terminal sequences of the RNA viral genome. Therefore, the terminal sequences are determined one by one using rapid amplification of cDNA ends (RACE). However, since some RNA viruses have segmented genomes, the burden of the determination using RACE is proportional to the number of segments. To date, there is only one study attempting whole genome sequencing of multiple RNA viruses without using above mentioned methods, but the generated sequences' accuracy compared to the reference sequences was up to 97% and did not reach 100% due to the low read depth. Hence, we established novel methods, named PCR-NGS and RCA-NGS, that were optimized for an NGS machine, MinION. These methods do not require nucleic acid amplification with virus-specific PCR primers, physical viral particle enrichment, and RACE. These methods enable whole RNA viral genome sequencing by combining the following techniques: (1) removal of unwanted DNA and RNA other than the RNA viral genome by nuclease treatment; (2) the terminal of viral genome sequence determination by barcoded linkers ligation; (3) amplification of the viral genomic cDNA using ligated linker sequences-specific PCR or an isothermal DNA amplification technique, such as rolling circle amplification (RCA). The established method was evaluated using isolated RNA viruses with single-stranded, double-stranded, positive-stranded, negative-stranded, non-segmented or multi-segmented genomes. As a result, all the viral genome sequences could be determined with 100% accuracy, and these mean read depths were greater than 2,500×, at least using either of the methods. This method should allow for easy and economical determination of accurate RNA viral genomes.

8.
Microbiol Spectr ; : e0020923, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2270664

RESUMEN

COVID-19 has significantly affected hospital infection prevention and control (IPC) practices, especially in intensive care units (ICUs). This frequently caused dissemination of multidrug-resistant organisms (MDROs), including carbapenem-resistant Acinetobacter baumannii (CRAB). Here, we report the management of a CRAB outbreak in a large ICU COVID-19 hub Hospital in Italy, together with retrospective genotypic analysis by whole-genome sequencing (WGS). Bacterial strains obtained from severe COVID-19 mechanically ventilated patients diagnosed with CRAB infection or colonization between October 2020 and May 2021 were analyzed by WGS to assess antimicrobial resistance and virulence genes, along with mobile genetic elements. Phylogenetic analysis in combination with epidemiological data was used to identify putative transmission chains. CRAB infections and colonization were diagnosed in 14/40 (35%) and 26/40 (65%) cases, respectively, with isolation within 48 h from admission in 7 cases (17.5%). All CRAB strains belonged to Pasteur sequence type 2 (ST2) and 5 different Oxford STs and presented blaOXA-23 gene-carrying Tn2006 transposons. Phylogenetic analysis revealed the existence of four transmission chains inside and among ICUs, circulating mainly between November and January 2021. A tailored IPC strategy was composed of a 5-point bundle, including ICU modules' temporary conversion to CRAB-ICUs and dynamic reopening, with limited impact on ICU admission rate. After its implementation, no CRAB transmission chains were detected. Our study underlies the potentiality of integrating classical epidemiological studies with genomic investigation to identify transmission routes during outbreaks, which could represent a valuable tool to ensure IPC strategies and prevent the spread of MDROs. IMPORTANCE Infection prevention and control (IPC) practices are of paramount importance for preventing the spread of multidrug-resistant organisms (MDROs) in hospitals, especially in the intensive care unit (ICU). Whole-genome sequencing (WGS) is seen as a promising tool for IPC, but its employment is currently still limited. COVID-19 pandemics have posed dramatic challenges in IPC practices, causing worldwide several outbreaks of MDROs, including carbapenem-resistant Acinetobacter baumannii (CRAB). We present the management of a CRAB outbreak in a large ICU COVID-19 hub hospital in Italy using a tailored IPC strategy that allowed us to contain CRAB transmission while preventing ICU closure during a critical pandemic period. The analysis of clinical and epidemiological data coupled with retrospective genotypic analysis by WGS identified different putative transmission chains and confirmed the effectiveness of the IPC strategy implemented. This could be a promising approach for future IPC strategies.

9.
Front Cell Infect Microbiol ; 12: 1066390, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2239918

RESUMEN

Introduction: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. Methods: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. Results: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. Discussion: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Infección Hospitalaria/epidemiología , Pandemias/prevención & control , Genómica , Reino Unido/epidemiología
10.
Antibiotics (Basel) ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2166200

RESUMEN

During the COVID-19 pandemic, intensive care units (ICUs) operated at or above capacity, and the number of ICU patients coinfected by nosocomial microorganisms increased. Here, we characterize the population structure and resistance mechanisms of carbapenemase-producing Klebsiella pneumoniae (CP-Kpn) from COVID-19 ICU patients and compare them to pre-pandemic populations of CP-Kpn. We analyzed 84 CP-Kpn isolates obtained during the pandemic and 74 CP-Kpn isolates obtained during the pre-pandemic period (2019) by whole genome sequencing, core genome multilocus sequence typing, plasmid reconstruction, and antibiotic susceptibility tests. More CP-Kpn COVID-19 isolates produced OXA-48 (60/84, 71.4%) and VIM-1 (18/84, 21.4%) than KPC (8/84, 9.5%). Fewer pre-pandemic CP-Kpn isolates produced VIM-1 (7/74, 9.5%). Cefiderocol (97.3-100%) and plazomicin (97.5-100%) had the highest antibiotic activity against pandemic and pre-pandemic isolates. Sequence type 307 (ST307) was the most widely distributed ST in both groups. VIM-1-producing isolates belonging to ST307, ST17, ST321 and ST485, (STs infrequently associated to VIM-1) were detected during the COVID-19 period. Class 1 integron Int1-blaVIM-1-aac(6')-1b-dfrB1-aadAI-catB2-qacEΔ1/sul1, found on an IncL plasmid of approximately 70,000 bp, carried blaVIM-1 in ST307, ST17, ST485, and ST321 isolates. Thus, CP-Kpn populations from pandemic and pre-pandemic periods have similarities. However, VIM-1 isolates associated with atypical STs increased during the pandemic, which warrants additional monitoring and surveillance.

11.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(10): 546-549, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2130668

RESUMEN

INTRODUCTION: A newly identified SARS-CoV-2 variant, VOC202012/01 originating lineage B.1.1.7, recently emerged in the United Kingdom. The rapid spread in the UK of this new variant has caused other countries to be vigilant. MATERIAL AND METHODS: We based our initial screening of B.1.1.7 on the dropout of the S gene signal in the TaqPath assay, caused by the 69/70 deletion. Subsequently, we confirmed the B.1.1.7 candidates by whole genome sequencing. RESULTS: We describe the first three imported cases of this variant from London to Madrid, subsequent post-arrival household transmission to three relatives, and the two first cases without epidemiological links to UK. One case required hospitalization. In all cases, drop-out of gene S was correctly associated to the B.1.1.7 variant, as all the corresponding sequences carried the 17 lineage-marker mutations. CONCLUSION: The first identifications of the SARS-CoV-2 B.1.1.7 variant in Spain indicate the role of independent introductions from the UK coexisting with post-arrival transmission in the community, since the early steps of this new variant in our country.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , España/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Hospitalización
12.
Front Med (Lausanne) ; 9: 955930, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2123424

RESUMEN

Background: Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods: Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results: The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion: The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.

13.
Encyclopedia of Forensic Sciences, Third Edition (Third Edition) ; : 555-562, 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2094915

RESUMEN

It’s been 2 decades since the posting of the anthrax letters in the United States in 2001. This event marked a pivotal point in our history. It highlighted the vulnerability of modern society to acts of bioterrorism and set countries on a course to develop capabilities to pre-empt, prevent, react to, investigate, and recover from acts of bioterrorism. The current COVID-19 pandemic is a stark reminder of the enormity of the impact that the release of a biological agent, natural or otherwise, can have on an immunological naïve society. The purpose of this article is to describe how microbiology is applied in the investigation of bioterrorism, highlighting the modern advances in technology, particularly the DNA technologies, which have assisted this discipline as a forensic practice.

14.
Cell Syst ; 13(10): 808-816.e5, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2075982

RESUMEN

Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which are critical for the structure of antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype when using standard short-read sequencing technologies. Here, we introduce ImmunoTyper-SR, an algorithmic tool for the genotyping and CNV analysis of the germline IGHV genes on Illumina whole-genome sequencing (WGS) data using a combinatorial optimization formulation that resolves ambiguous read mappings. We have validated ImmunoTyper-SR on 12 individuals, whose IGHV allele composition had been independently validated, as well as concordance between WGS replicates from nine individuals. We then applied ImmunoTyper-SR on 585 COVID patients to investigate the associations between IGHV alleles and anti-type I IFN autoantibodies, which were previously associated with COVID-19 severity.


Asunto(s)
COVID-19 , Región Variable de Inmunoglobulina , Humanos , Región Variable de Inmunoglobulina/genética , Genotipo , COVID-19/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas Pesadas de Inmunoglobulina/genética , Autoanticuerpos/genética
15.
Bioinform Biol Insights ; 16: 11779322221126294, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2042935

RESUMEN

Whole genome sequencing has rapidly progressed in recent years, with sequencing the SARS-CoV-2 genomes, making it a more reliable clinical tool for public health surveillance. This development has resulted in the production of a large amount of genomic data used for various types of genomic exploration. However, without a proper standard protocol, the usage of genomic data for analyzing various biological phenomena, such as mutation and evolution, may result in a propagating risk of using an unvalidated data set. This process could lead to irregular data being generated along with a high risk of altered analysis. Thus, the current study lays out the foundation for a preprocess pipeline using data analysis to analyze the genomic data set for its accuracy. We have used the recent example of SARS-CoV-2 to demonstrate the process overflow that can be utilized for various kinds of biological exploration such as understanding mutational events, evolutionary divergence, and speciation. Our analysis reveals a significant amount of sequence divergence in the gamma variant as compared with the reference genome thereby making the variant less infective and deadly. Moreover, we found regions in the genomic sequence that is more prone to mutational localization thereby altering the structural integrity of the virus resulting in a more reliable molecular viral mechanism. We believe that the current work will help for an initial check of the genomic data followed by the biological assessment of the process overflow which will be beneficial for the variant analysis and mutational uprising.

16.
Front Microbiol ; 13: 973257, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2029968

RESUMEN

Invasive Haemophilus influenzae (Hi) disease has decreased in countries that included Hi type b (Hib) vaccination in their childhood immunization programs in the 1990s. Non-typeable (NT) and non-b strains are now the leading causes of invasive Hi disease in Europe, with most cases reported in young children and the elderly. Concerningly, no vaccines toward such strains are available and beta-lactam resistance is increasing. We describe the epidemiology of invasive Hi disease reported to the Norwegian Surveillance System for Communicable Diseases (MSIS) (2017-2021, n = 407). Whole-genome sequencing (WGS) was performed on 245 isolates. We investigated the molecular epidemiology (core genome phylogeny) and the presence of antibiotic resistance markers (including chromosomal mutations associated with beta-lactam or quinolone resistance). For isolates characterized with both WGS and phenotypic antibiotic susceptibility testing (AST) (n = 113) we assessed correlation between resistance markers and susceptibility categorization by calculation of sensitivity, specificity, and predictive values. Incidence rates of invasive Hi disease in Norway ranged from 0.7 to 2.3 per 100,000 inhabitants/year (mean 1.5 per 100,000) and declined during the COVID-19 pandemic. The bacterial population consisted of two major phylogenetic groups with subclustering by serotype and multi-locus sequence type (ST). NTHi accounted for 71.8% (176). The distribution of STs was in line with previous European reports. We identified 13 clusters, including four encapsulated and three previously described international NTHi clones with bla TEM-1 (ST103) or altered PBP3 (rPBP3) (ST14/IIA and ST367/IIA). Resistance markers were detected in 25.3% (62/245) of the isolates, with bla TEM-1 (31, 50.0%) and rPBP3 (28, 45.2%) being the most frequent. All isolates categorized as resistant to aminopenicillins, tetracycline or chloramphenicol possessed relevant resistance markers, and the absence of relevant substitutions in PBP3 and GyrA/ParC predicted susceptibility to cefotaxime, ceftriaxone, meropenem and quinolones. Among the 132 WGS-only isolates, one isolate had PBP3 substitutions associated with resistance to third-generation cephalosporins, and one isolate had GyrA/ParC alterations associated with quinolone resistance. The detection of international virulent and resistant NTHi clones underlines the need for a global molecular surveillance system. WGS is a useful supplement to AST and should be performed on all invasive isolates.

17.
Vaccines (Basel) ; 10(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2024372

RESUMEN

(1) Background: Over the last few years, there has been growing interest in the whole genome sequencing (WGS) of rapidly mutating pathogens, such as influenza viruses (IVs), which has led us to carry out in-depth studies on viral evolution in both research and diagnostic settings. We aimed at describing and determining the validity of a WGS protocol that can obtain the complete genome sequence of A(H3N2) IVs directly from clinical specimens. (2) Methods: RNA was extracted from 80 A(H3N2)-positive respiratory specimens. A one-step RT-PCR assay, based on the use of a single set of specific primers, was used to retro-transcribe and amplify the entire IV type A genome in a single reaction, thus avoiding additional enrichment approaches and host genome removal treatments. Purified DNA was quantified; genomic libraries were prepared and sequenced by using Illumina MiSeq platform. The obtained reads were evaluated for sequence quality and read-pair length. (3) Results: All of the study specimens were successfully amplified, and the purified DNA concentration proved to be suitable for NGS (at least 0.2 ng/µL). An acceptable coverage depth for all eight genes of influenza A(H3N2) virus was obtained for 90% (72/80) of the clinical samples with viral loads >105 genome copies/mL. The mean depth of sequencing ranged from 105 to 200 reads per position, with the majority of the mean depth values being above 103 reads per position. The total turnaround time per set of 20 samples was four working days, including sequence analysis. (4) Conclusions: This fast and reliable high-throughput sequencing protocol should be used for influenza surveillance and outbreak investigation.

18.
PeerJ ; 10: e13821, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2010486

RESUMEN

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spread globally and is being surveilled with an international genome sequencing effort. Surveillance consists of sample acquisition, library preparation, and whole genome sequencing. This has necessitated a classification scheme detailing Variants of Concern (VOC) and Variants of Interest (VOI), and the rapid expansion of bioinformatics tools for sequence analysis. These bioinformatic tools are means for major actionable results: maintaining quality assurance and checks, defining population structure, performing genomic epidemiology, and inferring lineage to allow reliable and actionable identification and classification. Additionally, the pandemic has required public health laboratories to reach high throughput proficiency in sequencing library preparation and downstream data analysis rapidly. However, both processes can be limited by a lack of a standardized sequence dataset. Methods: We identified six SARS-CoV-2 sequence datasets from recent publications, public databases and internal resources. In addition, we created a method to mine public databases to identify representative genomes for these datasets. Using this novel method, we identified several genomes as either VOI/VOC representatives or non-VOI/VOC representatives. To describe each dataset, we utilized a previously published datasets format, which describes accession information and whole dataset information. Additionally, a script from the same publication has been enhanced to download and verify all data from this study. Results: The benchmark datasets focus on the two most widely used sequencing platforms: long read sequencing data from the Oxford Nanopore Technologies platform and short read sequencing data from the Illumina platform. There are six datasets: three were derived from recent publications; two were derived from data mining public databases to answer common questions not covered by published datasets; one unique dataset representing common sequence failures was obtained by rigorously scrutinizing data that did not pass quality checks. The dataset summary table, data mining script and quality control (QC) values for all sequence data are publicly available on GitHub: https://github.com/CDCgov/datasets-sars-cov-2. Discussion: The datasets presented here were generated to help public health laboratories build sequencing and bioinformatics capacity, benchmark different workflows and pipelines, and calibrate QC thresholds to ensure sequencing quality. Together, improvements in these areas support accurate and timely outbreak investigation and surveillance, providing actionable data for pandemic management. Furthermore, these publicly available and standardized benchmark data will facilitate the development and adjudication of new pipelines.

19.
Antibiotics (Basel) ; 11(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1938672

RESUMEN

A total of 43 A. baumannii strains, isolated from 43 patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and by bacterial sepsis, were analyzed by antimicrobial susceptibility testing. All strains were resistant to almost three different classes of antibiotics, including carbapenems and colistin. The whole-genome sequencing (WGS) of eight selected A. baumannii isolates showed the presence of different insertion sequences (ISs), such as ISAba13, ISAba26, IS26, ISVsa3, ISEc29, IS6100 and IS17, giving to A. baumannii a high ability to capture and mobilize antibiotic resistance genes. Resistance to carbapenems is mainly mediated by the presence of OXA-23, OXA-66 and OXA-82 oxacillinases belonging to OXA-51-like enzymes. The presence of AmpC cephalosporinase, ADC-25, was identified in all A. baumannii. The pathogenicity of A. baumannii was exacerbated by the presence of several virulence factors. The multi-locus sequence typing (MLST) analysis showed that all strains belong to sequence type 2 (ST) international clone.

20.
Microbiol Spectr ; 10(4): e0073622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1909609

RESUMEN

COVID-19 is caused by SARS-CoV-2, several virulent variants of which have emerged since 2019. More than 529 million people have been infected, and at least 6 million have died. Our aim was to develop a fast, accurate, low-cost method for detecting and identifying newly emerging variants of concern (VOCs) that could pose a global threat. The 341-bp DNA sequence of a specific region of the SARS-CoV-2's spike protein was amplified by a one-step PCR on RNA samples from 46 patients. The product was sequenced using next-generation sequencing (NGS). DNA sequences from seven genomes, the original Wuhan isolate and six different representative variants obtained from the GISAID website, were used as references. Complete whole-genome sequences from local isolates were also obtained from the GISAID website, and their RNA was used for comparison. We used an amplicon-based NGS method (termed VOC-NGS) for genotyping and successfully identified all 46 samples. Fifteen (32.6%) were like the original isolate. Twenty-seven were VOCs: nine (19.5%) Alpha, eight (19%) Delta, six (14%) Beta, and four (8.7%) Omicron. Two were variants of interest (VOI): one (2%) Kappa and one (2%) Zeta. Two samples were mixtures of two variants, one of Alpha and Beta and one of Alpha and Delta. The Spearman correlation between whole-genome sequencing (WGS) and VOC-NGS was significant (P < 0.001) with perfect agreement (Kappa = 0.916) for 36/38 (94.7%) samples with VOC-NGS detecting all the known VOCs. Genotyping by VOC-NGS enables rapid screening of high-throughput clinical samples that includes the identification of VOCs and mixtures of variants, at lower cost than WGS. IMPORTANCE The manuscript described SARS-Cov-2 genotyping by VOC-NGS, which presents an ideal balance of accuracy, rapidity, and cost for detecting and globally tracking VOCs and some VOI of SARS-CoV-2. A large number of clinical samples can be tested together. Rapid introduction of new mutations at a specific site of the spike protein necessitates efficient strain detection and identification to enable choice of treatment and the application of vaccination, as well as planning public health policy.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , ARN , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA